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Abstract. Saturating the functional integral directly with instanton-anti-instanton-type 
fluctuations, the vacuum energies for a supersymmetric quantum mechanical system with 
(i) a double-well and (ii) a triple-well potential are studied. In the former, the vacuum 
energy is raised by these fluctuations, indicating spontaneous breakdown of supersymmetry. 
In the latter, the vacuum energy stays at zero, indicating that supersymmetry is not broken. 
In addition, the energy of the next level supersymmetric pair of states has been calculated 
for the triple-well case. 

1. Introduction 

Supersymmetry [ 13 as a possible fundamental symmetry between fermions and bosons 
has been studied for over a decade now. It appears to cure the notorious gauge 
hierarchy problem [2] in the grand unified theories [3,4]. However, at ordinary energy 
scales, this symmetry is not exact in nature. Whereas perturbative quantum effects 
respect supersymmetry, it would be desirable if non-perturbative fluctuations were to 
break it. To this end, it is interesting to study the non-perturbative fluctuations such 
as instantons and anti-instantons [4-81. 

In non-supersymmetric theories in (0 + 1) dimensions, the instanton contributions 
to the vacuum energy have been discussed in [9-111. For supersymmetric models in 
( O +  1) dimensions, the role of instantons has been studied in [6]. 

In this paper, we shall discuss instanton-type quantum fluctuations in super- 
symmetric quantum mechanical systems with (i) a double-well and (ii) a triple-well 
potential. In contrast to [6], where single-instanton-induced vacuum expectation values 
of supersymmetric generators were obtained, we shall saturate the functional integral 
directly with instanton-type fluctuations to obtain the vacuum energy. As is well known, 
single instantons or anti-instantons do not contribute to the vacuum functional integral 
because of the zero modes of the relevant fermion determinant obtained by integrating 
over fermionic degrees of freedom. However, in the background of an instanton-anti- 
instanton, this fermion determinant does not have any exact zero modes. Hence, such 
fluctuations may in general contribute to the vacuum energy. Here we develop a 
formalism to calculate these contributions. This can be easily generalised to study 
possible supersymmetry breaking in field-theoretic models in higher dimensions, 
whereas the formalism of [6] is not useful for such a calculation as the fermionic zero 
modes induce zero VEV for the supercharges in these models. 
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The paper is organised as follows. In § 2 we present the supersymmetric quantum 
mechanical models in general. In § 3 we discuss the double-well potential. We find 
that the vacuum energy is shifted upwards due to instanton-anti-instanton fluctuations, 
thereby breaking supersymmetry spontaneously. The case of the triple-well potential 
is discussed in § 4 .  Here, in addition to instanton-anti-instanton effects, two-instanton 
and two-anti-instanton effects also contribute. However, the Hamiltonian matrix for 
the three lowest-lying states (which are independent linear combinations of the three 
classical ground states) has a zero and two equal positive eigenvalues. This implies 
that supersymmetry is not broken in this case. Finally, § 5 contains some concluding 
remarks. 

2. Supersymmetric quantum mechanics 

The Minkowskian action for a supersymmetric classical particle with anticommuting 
degrees of freedom may be written as 

AMink = 1 [ dt[x2 - S2(x) + i$T$ - S ' ( X ) $ ~ U , $ ]  

where $ is a two-component anticommuting variable 

and u2 is the Pauli matrix 

This action is invariant under the supersymmetric transformations 

6,x = E T U 2 $  

sE$'= ~ ~ ( i u , x  - S(x)). 

SE$ = (-iu2x - S ( X ) ) E  

We shall be studying the following two specific cases of this action: 
(i) double-well potential 

V E 'S2 2 4  = L A  (x2- m 2 / A ) 2  (2 .3)  

(ii) triple-well potential 

V = is2 = ( A  ' x 2 / 2 m 2 ) (  m 2 / A  - x ~ ) ~ .  ( 2 . 4 )  

In the former case, we have two classical ground states, denoted by I&), corresponding 
to x = j = m / f i  and $ = 0. In the latter case, we have three classical ground states, 
denoted by I&), IO), corresponding to x = * m / a ,  0 and CC, = 0. The classical vacuum 
energy for all these ground states is zero as dictated by supersymmetry. Perturbative 
quantum fluctuations around any one of these ground states do not change its energy. 
However, non-perturbative vacuum fluctuations which induce quantum mechanical 
tunnelling between various ground states may contribute to the vacuum energy. 
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3. Double-well potential 

Let us study the effect of non-pertrubative vacuum fluctuations such as instantons and 
anti-instantons in the case of the double-well potential. Instantons and anti-instantons 
are the solutions of the Euclidean equations of motion implied by the Euclidean action 

A E = i  dt[X2+S2(x)+ +,'~,b+S'(x)+,'a~+] (3 .1)  I 
and are given for the double-well potential (2.3) by 

xI( t - t l )  = - tanh 6 = o  
(3.2) 

respectively [ 101 (for a recent review of instanton physics, see [ 113). These satisfy the 
linearised equations of motion XI = -S(x,), xi= S(xi), respectively. The classical action 
for both of them is the same: 

A. = 2 a m 3 / 3 A .  (3.3) 

To see the effect of these quantum fluctuations, we shall evaluate the following 
tunnelling amplitudes: 

(* I  exp(-HT/h)lT)= 

where T is the length of the large time box. 

x(  7 / 2 ) = - t m / J A  

[dx ( t ) 1 d+l ( t )Ed +2( t 11 exp( -&I fi 1 (3.4) I x( - T / 2 ) = ~ m /  Jh 

3.1. Single-instanton (or single-anti-instanton) fluctuations 

An instanton contribution to the functional integral (3.4) can be obtained by expanding 
around the instanton: 

x ( t )  = x d t ) + ~ ( t )  (3.5) 

which yields 

( + I  exp(-HT/h)/-) , ,=exp(-A,lA) 
Y (  T / 2 )  =o 

y ( - T / 2 ) = 0  

xexP[ - 2 h Y D B Y - G  1 1 .,'DF+] 

where 

d2 d2 
d t  dt2 

DB[xI] = -T+ (.S2+ S"S),, = --+ m2 

(3.7) 
d d 

D F [ x I ] = - + a 2 S ' ( x I )  =-+a2*m tanh 
d t  d t  

Naive integration over the bosonic fluctuations y (  t )  yields det-1'2 DB. However, 
this operator DB has a zero eigenvalue corresponding to the invariance of the Euclidean 
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action under the translation of the instanton location t l  . This has to be treated by the 
collective coordinate method, which yields an integration over the instanton location 
t l  multiplied by the corresponding Jacobian factor (A0/2.rrA)’/*. 

Integration over the fermionic fluctuations yields det’/*D, in (3.6). This fermionic 
operator DF[x,] also has a zero mode 

= JT; X‘+’(  t - t l ) & F )  (3.8) 
and the corresponding fermionic zero mode for the anti-instanton operator DF[xT] is 

= f i x ( - ) (  t - t 2 ) & p .  (3.9) 
Here E F )  are the anticommuting collective coordinates corresponding to these zero 
modes. 

The functional integral (3.6) can now be represented as 

(+I exp(-HT/h)l-) , ,=exp(-A,/h) 1 dt, ( - A o ) 1 ’ 2 ~ x l  J d & c ’  
2 Tri 

with 

det’ &[xi] 
KxtE (det’ DB[xI]) 

where primes denote that the zero modes have been factored out. Writing 
det’ &[XI] = {det’[-d2/dt2+ (S”+ S”S),,] det[-d2/dt*+ (F2- S”S)xl]}1’2 

we have 

(det  6‘)’”- det[-d2/dt2+ (S‘>-- S”S),,] ( K,,= ~ 

det‘ DB det’[ -d2/dt2 + ( S’’ + S‘’S),,] 

(3.10) 

(3.11) 

(3.12) 

where the operator in the numerator does not have a zero mode for the boundary 
conditions of (3.6) and hence is not primed. This determinantal factor can be evaluated 
by using the technique presented in the review of Gelfand and Yaglom [lo-121 in a 
large box of length T :  

(3.13) 

(3.14) 
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In (3.13) the expression in parentheses represents det &/det DB, where det DB con- 
tains E t  which is the would-be zero mode when T + CO. This has been divided out to 
get the primed determinant. This would-be zero mode (exact in the limit T + 00) can 
be calculated as in [ l o ] :  

dtN;(t))-’. (3.16) 
T /  2 

Taking 

(3.17) 

and the limit T + m ,  equations (3.13) and (3.16) yield the determinantal factor to be 

K,, = ( 2 f i m ) ” ’ .  (3.18) 

It is interesing to notice that we do not have an exact matching of Bose and Fermi 
non-zero eigenmodes here [ 131.  This is unlike the case of supersymmetric Yang-Mills 
theory in ( 3 + l )  dimensions where this ratio would be 1 due to exact Bose-Fermi 
cancellations [ 141. 

Inserting (3.18) in (3.10),  we can finally write the single-instanton contribution to 
the vacuum functional integral as 

1/2  

(+I exp(-HT/h)I-),, =exp(-A,/h)(&) ( 2 f i m ) ” ’  { dt,  dEc)  

Similarly, the single-anti-instanton contribution can be written as 

( - 1  exp( - H T /  h ) (  +)xi = exp( -Ao/ h )  ( - 2 h ) ” 2 ( 2 f i m ) 1 ’ 2  { dt, { dEb-). 

(3.19) 

(3.20) 

Note that K,, = K,, . EL- )  is the collective coordinate corresponding to the fermionic 
zero mode in the anti-instanton background. 

As is obvious, because of the fermionic integration (over ~ c )  and E $ - ) )  both (3.19) 
and (3.20) are exactly zero. Hence, single instantons or anti-instantons do not induce 
any quantum tunnelling. In fact, in general, any number of instantons and anti- 
instantons does not affect quantum tunnelling as long as there is an excess of one 
instanton or anti-instanton (kink number = f 1 ) .  However, topologically trivial (kink 
number = 0) configurations containing an equal number of instantons and anti-instan- 
tons do contribute to the vacuum functional integral. This is because there are no 
exact fermionic zero modes for such configurations. A pair consisting of an instanton 
and an anti-instanton would give the lowest-order effect from such vacuum fluctuations. 

3.2. Well separated instanton-anti-instanton 

An instanton-anti-instanton configuration is depicted in figure 1 ,  with the instanton 
located at t ,  and the anti-instanton located at t 2 :  

(3.21) 

where a = ( t l  + t 2 ) / 2 .  This configuration is not a stationary point of the Euclidean 
action, but for infinite separation, t2 - t l  = p + T + 00, it approaches a stationary point. 
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Under local translations of the instanton and anti-instanton, t ,  , t2, the action changes 
by an exponentially small amount and hence there are two approximate translational 
symmetries. 

The action for this instanton-anti-instanton configuration can be written as 
T / 2  

A J X I T I  =- d t [ i f i +  S’(X,T)] 
-T I2  

(3.22) 

It is convenient to shift the integration variable from t + t + t1 and t + t + t2 in these 
two terms respectively. Then, in the approximation of large separation, P = t2 - t l  >> 
f i l m ,  (3.22) can be written for T + 00 as 

T / 2  

dt  xsf( t )  
- T / 2  

(3.23) 

where 

Here A. is the single-instanton action (3.3). As expected, for infinite separation, 
P + T + 00, the interaction action A,,,@) goes to zero. 

In order to obtain the contribution of this fluctuation XIi( t; t l ,  t2) to the functional 
integral for (-lexp(-HT/ h ) / - ) ,  we expand the action about this configuration. Corre- 
sponding to the two approximate translational zero modes, we introduce the integration 
over the two collective coordinates t ,  and t2, with a Jacobian factor (Ao/27rh)”* for 
each one of them. We shall also evaluate the fermion determinant KO( t2 - t,) in the 
subspace of the fermionic zero modes (3.8) and (3.9) separately. The rest of the 
functional integral will be denoted by K ( P ) :  

x ( T / Z ) = m / J h  

[dx(t) l  d+l(t)[d+2(t)l  exp(-AE/h) I ( - 1  exp( - HT/ h )I -LIi = 
x ( - T / Z ) = - m / J h  
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for large separation p >>a/ m. Here Po >> ./5/ m is the minimal distance up to which 
our approximation would be valid. In order to avoid double counting, such a minimal 
separation is needed to distinguish the quantum fluctuations in the instanton-anti- 
instanton sector from those in the vacuum sector. In other words, only the non- 
perturbative contribution of the instanton-anti-instanton has to be considered. This 
is the contribution of the far-separated configuration. The almost overlapping instan- 
ton-anti-instanton configuration is taken into account when quantum fluctuations 
around the vacuum are calculated. These are perturbative contributions which do not 
break supersymmetry. 

In this large separation region the instanton-anti-instanton configuration is almost 
a stationary point of the action, and K ( P )  is simply the product of the instanton and 
anti-instanton non-zero modes determinantal factors of equation (3.18), K ( P )  3 
K x I K x i = 2 f i  ( p  >>d2/m). To estimate the minimal distance, P o ,  we note that the 
approximation is valid provided the interaction action, Aint(p),  is only a perturbation 
compared to Ao, i.e. lAint(/3)l 6 h << Ao. In this range we can neglect Ai,,@) in the 
exponential. 

Next, let us evaluate the fermion determinant in the subspace of zero modes given 
in (3.8) and (3.9): 

(3.25) 

We break the time integral from -T/2 to cy and from a to T/2. Integration by parts 
and use of the equations satisfied by and x(-), 

[d/dt + S'(X,( t - t I ) ) ]x(+)(  t - t l )  = 0 

[d/dt - S'(Xi( t - t z ) ) ] ~ ' - ' (  t - t z )  = 0 

t < f f  

t > f f  
(3.26) 

yields for large separation and large T: 

K O @ )  = -(3m/4&) sech4(mp/2./5). (3.27) 

Notice that for p + T + CO, KO+ 0 as expected, because in this limit the fermionic zero 
modes become exact. 

Inserting (3.27) into (3.24) and performing the integrations, we find 

where K ( P )  = 2 ~ 5 m .  As argued above the minimal separation, Po, is given by 
Aint(po) = - h, so we have 

mT ( - 1  exp(-HT/h)l-),,i= -- exp(-2Ao/ h )[ 1 + O( fi/AO)l (3.29) 

where higher-order corrections in R /  A. were neglected. Those arise from corrections 
to K ( p  ) and the perturbative expansion around the instanton-anti-instanton. Note 
that K (  T) - K ( P o )  =O(exp(-mp,/fi])  = O( h/A,), which is in agreement with our 
approximation. 

.rra 
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Similar calculations could be done for the contribution 
instanton contribution to (+I exp( -HT/  h)l+) with the same 
right-hand side of (3.29). 

From these, we notice that we have two ground states in 
energies 

(+I HI+) = (-lHl-) = ( m h /  TA) exp( -2Ao/ h )  

of the anti-instanton- 
result as given on the 

this model with equal 

(3.30) 
up to the lowest order and supersymmetry is spontaneously broken. This result is in 
accordance with that of [6] where the ground-state energies were obtained by calculating 
the VEV of the supercharges in a background of instantons. Here, on the other hand, 
we calculate the vacuum energy directly by saturating the functional integral with an 
instanton-anti-instanton configuration. Note that had we integrated over P in (3.24) 
without ignoring Aint(P) in the exponential, the same result would be found provided 
Po is determined by Aint(Po) = -h In 2. Here again ~ ~ A i , , t ( ~ o ) ~  = O( h )  << A. as argued 
above. 

4. Triple-well potential 

In this case, there is a general argument due to Witten [4] that supersymmetry is not 
broken by quantum effects. He has argued the existence of a normalisable zero-energy 
ground state from general principles. In the following, we shall demonstrate that, 
indeed, instanton-anti-instanton, two-instanton and two-anti-instanton effects conspire 
to leave a zero-energy ground state. We shall also calculate the energy of the next-level 
excited states. 

The potential is given by the expression in (2.4). This model admits two types of 
instantons [ 151: 

x = x,(t - to) =- m (l+tanh[*m(t-t0)] 
v5 (i) x = - S ( x )  

(ii) x = S(x)  
m (1 - tanh[;( t - to)] 

x = y,(  t - fo) = -- v5 (4.1) 

which interpolate between the classical ground states x = 0 as t + -CC and x = m/fi 
as t + cc (x,), or x = - - m a ,  as t +. -CC and x = 0 as t + ~ ( y , ) .  There are also two types 
of anti-instantons [ 151: 

which interpolate between the classical ground states x =  m/& as t +  --CO and x=O 
as t + CC(Xi), or x = 0 as t + -CC and x = - m / 6  as t +. co(uf). 

The action for all these instantons and anti-instantons is the same: 

A. = m3/4h. (4.3) 

4.1. Single-instanton (anti-instanton) contribution 

As in the double-well case, the single-instanton (or single-anti-instanton) contribution 
to the vacuum functional integral is completely suppressed due to the fermionic zero 
modes. These zero modes are the normalisable solutions of 

[d /d t+  azS’(x)]+ = 0 (4.4) 
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where x is any one of the configurations x,, Xi, y,, yi listed in (4.1) and (4.2) and S(x) 
is as defined in (2.4). These zero modes can be written as 

(ii) YI exp[m(t- to)/2] ~ e c h ~ ’ ~ [ m ( t  - t o ) ] -  

(iii) xr exp[m(t-to)/2] sech3/’[m(t-t0)]- 
(4.5) 

(iv) yi exp[-m( t - to)/2] sech312[ m (  t - to)] 

Similarly to (3.10), the various tunnelling amplitudes (I-)+ IO), IO)+ I+), etc) can 
be expressed in terms of integration over the collective coordinates representing the 
fermionic and bosonic zero modes and the non-zero-mode determinantal factor of the 
form (3.13)-(3.16). Here we have 

det{-d2/d~2+am2[15 tanh2(m7)-6 tanh(m~)-5]} 
det’{-d’/d~~+$m*[3 tanh2(mT) -6 tanh(m.r)+7]} (4.6) 

and K,., = Kyi is given by the same expression with T = t - to replaced by -T  = -( t - to). 
In the formulae (3.13)-(3.16), the N and M functions are for the present case defined 
as follows: 

M,,(T) = MXi(7) = exp(-m~/2)  ~ o s h ~ ’ ~ ( m ~ )  

NyI( T )  = Nxi( T )  = exp( m7/2) sech3l2( mT) 

and 

MX,( T )  = Myi( T )  = exp( m ~ / 2 )  cosh312( mT) 

N,.~(T) = ~ ~ ~ ( 7 )  = exp(-m~/2)  sech312(m~). 

(4.7) 

Using these, we obtain from (3.13)-(3.16) by a direct computation after taking the 
limit T + CO: 

K,., = KXi = Kyl = Kyi = (2fim)‘”.  (4.9) 

Since the single-instanton (or single-anti-instanton) effects are completely sup- 
pressed, the possible next-order contribution to the vacuum functional integral will 
again come from instanton-anti-instanton configurations. In this case, we also have 
to include two-instanton and two-anti-instanton contributions representing quantum 
tunnellings I-) to I+) and I+) to I-). All these we consider in the next subsection. 

4.2. Znstanton-anti-instanton, two-instanton and two-anti-instanton contributions 

We now shall evaluate the contribution of the fluctuations of the type depicted in 
figure 2. Figures 2(a) and 2(b) contribute to the matrix element (01 exp(-HT/h)JO), 
figure 2 ( c )  contributes to ( - 1  exp(-HT/h)I - )  and figure 2(d)  to (+I exp(-HT/h)l+). 
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t o  t ,  

Figure 2. Configurations for the triple-well case: ( a )  instanton-anti-instanton; (6)  anti- 
instanton-instanton; (c) instanton-anti-instanton; ( d )  anti-instanton-instanton; ( e )  two- 
instanton; (f) two-anti-instanton. 

The instanton-instanton configuration of figure 2( e)  contributes to the tunnelling 
amplitude (+I exp( -HT/  h)l-) and the anti-instanton-anti-instanton fluctuation of 
figure 2(f) contributes to the tunnelling amplitude (-lexp( -HT/  h)l+). In particular, 
the instanton-anti-instanton contribution of figure 2( a )  can be written as 

(4.10) 
where the action for this configuration can be written as 

A [ x ~ ,  xi] =’ [I* + {aT’2] d t ( i 2+  S 2 )  
2 -TI2  

P / Z  T /  2 

- - { - T , 2  dfx:(f)+ d t i f ( t )  

-2A,+A,!A;(P) 
(4.1 1) 

with 

for large separations p = t2 - t l  >> 2/ m. As earlier, KF’(P)  is the fermionic determinant 
evaluated in the subspace of the relevant fermionic zero modes listed in (4.5). As in 
the previous section (equations (3.25)-(3.27)), we can approximate this as follows: 

(4.12) 
Again, for large separation, p + T + 00, when the instanton-anti-instanton configur- 

ation becomes a stationary point of the action, the function K ( p )  in (4.10) reduces 
to the product of the instanton and anti-instanton non-zero-mode determinantal factors 
given in (4.9), K ( T )  - K,,K,, = 2 a m .  

A,!Al(p) = A,[tanh(mp/Z)++ sech2(mp/2) - 13 

K!’(P) = -$m exp(-mp/2) sech2(mp/2). 

T+m 
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As argued above, the small separated configuration is included in the vacuum sector 
and the integrations are performed from a minimal distance Po<< 2/m given by 
IAint(Po)l = h << Ao, up to infinity. In this range Aint in the exponential is negligible 
compared with Ao. 

Inserting (4.11) and (4.12) into (4.10) and doing the integrations we have 

A' (' ) .  (4.13) ( O l e x p ( - H T / A ) l O ) , , x i = ~  exp(-2Ao/h) -2fim- 
A0 T 
ITh 2 A0 

Thus for Aint(Po) = -h we find 

(4.14) 

By symmetry, the fluctuation depicted in figure 2( b )  contributes the same amount 

so that adding (4.14) and (4.15) yields the energy for this state to be 

exp( -2A0/ h ) .  
JZmh -- 

IT 
(01 HIO)XIXi+YiYI - 

(4.15) 

(4.16) 

With regard to the fluctuations depicted in figures 2(c)-2(f), the calculations 
proceed exactly as above. The action for all these configurations is equal: 

~ [ y i , y i I = A [ ~ i ,  x i I = ~ [ ~ i ,  X ~ I = A [ X - ~ , ~ ~ I ~ . ~ A ~ + A ~ , Z I ( P )  

with 

A{:;@) =Ao[tanh(mp/2)+itanh2(mp/2)-t] (4.17) 

for large separations, P >>2/m. The fermionic determinants in the subspace of the 
relevant zero modes (4.5), in all these cases, are also equal and can be approximated 
by 

K i 2 ' ( p )  = -im exp( mp/2) sech3( mp/2) (4.18) 

for large separations. Now a rerun of the arguments presented above yields 

in the lowest order. 
Finally, the Hamiltonian matrix for the low-lying states can be written as 

(4.19) 

(4.20) 

in the lowest order. This matrix has a zero eigenvalue and two equal non-zero 
eigenvalues, (&"h/r)  exp( -2Ao/ h ) .  Hence supersymmetry is not broken in this 
case in contrast to that of the double-well potential. This is in accordance with the 
arguments of [4,6]. Further, the appearance of the next-lying states of equal energy 
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is also as dictated by supersymmetry. Note that our formalism allows the calculation 
of the next-lying states, which is not the case with the formalism of [6]. 

5. Concluding remarks 

By saturating the functional integral directly with instanton-anti-instanton, two- 
instanton and two-anti-instanton fluctuations, we have calculated the vacuum energy 
of a supersymmetric quantum mechanical particle moving in double-well and triple-well 
potentials. The vacuum energy in the former case does get raised from zero due to 
these quantum fluctuations, implying a spontaneous breakdown of supersymmetry. 
This vacuum energy has been calculated to the lowest order and the result is in 
agreement with that obtained in [6]. In the case of a triple-well potential, we find that 
there does survive a zero-energy ground state even when these types of fluctuations 
are included and therefore supersymmetry is not broken. We have also obtained the 
energy of the supersymmetric pair of the next-level states to the lowest order. They 
have the same energy in accordance with supersymmetry. 

It is interesting to compare the models studied here with the two N = 2 supersym- 
metric quantum mechanical models studied in [16], the first of which exhibits no 
supersymmetry breaking whereas in the second supersymmetry is broken. The breaking 
of supersymmetry in the second model is attributed to complex instanton solutions 
which induce tunnelling effects and shift the vacuum energy. Those solutions are 
missing in the first model. In both cases supersymmetry breaking was studied by 
calculating the vacuum energy for strong coupling and analysing its behaviour when 
the coupling is changed. The result has then been confirmed by studying the VEV of 
supercharges in a background of instantons. Alternatively, one can use the formalism 
presented in the present paper to calculate the vacuum energy by saturating the 
functional integral by the instanton-anti-instanton configuration. It is expected that 
the first model of [16] would exhibit the behaviour of the triple-well potential (equation 
(4.20)) whereas in the second the vacuum energy would be shifted as in equation (3.30) 
for the double well. One should only remember to take into account the complex 
instanton solutions of the second model of [16]. 

The method presented here is fairly general and can be used to explore the possible 
supersymmetry breaking in other models which admit an instanton type of vacuum 
fluctuations. It is particularly useful for field theoretic models, where due to the 
fermionic zero modes VEV of supercharges vanish in a background of instantons, and 
cannot therefore be used for the study of supersymmetry breaking effects. 
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